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ABSTRACT: The main purpose of this paper is to introduce a new subclass of close-to-convex functions in the open unit 

disc , denoted by  with respect to symmetric and conjugate points by applying a -analogue of the 

familiar Borel distribution (BD), which is a subclass of all functions that are analytic, univalent and normalized by 

the conditions  and . We find estimates  ,  , | | and | | for Taylor-Maclaurin 

coefficients of the functions in the subclass introduced, and a brief discussion is also given to the pertinent 

relationship between these classes and the famous Fekete- Szegӧ theorem for  and  . Also, we 

deduce various corollaries and consequences of the main results when . We find the sufficient condition for a function 

 to be in the class  and  . 
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1. INTRODUCTION 

Let  be the class of functions  which are analytic, univalent and normalized with  and , the function  

is given by 

 

 
(1.1) 

where 
 

is the unit disc. Also, the function  is given by 
 

 
(1.2) 

Therefore, the functions  and  have a convolution (or Hadamard product), which is given by 
 

 
(1.3) 

Consider  to be the family of functions  which are analytic in  and defined as follows 

(1.4) 

Assume that , we say that  is subordinate to  (written  if there exists a Schwarz function 

 analytic such that 

In particular, if the function  is univalent in , then the subordinate is equivalent to (see [2, 13]) 
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(1.5) 

Definition 1. [10] For  and  are arbitrarily fixed numbers and that  denote the family by  

containing functions of the form 

 

 
(1.6) 

is analytic in  and then 
 

(1.7) 

holds. 

In the year 1973, Janowski [10] introduced the following subclass of starlike functions: 
 

for . 

On the other hand, in 1959, Sakaguchi [19] introduced the class of starlike functions with respect to symmetric points as follows: 
 

Goel and Mehrok [8] introduced the subclass of class  as follows: 
 

for  

El-Ashwah and Thomas [4] introduced the class of starlike functions with respect to conjugate points as follows: 
 

 
Many authors introduced the analogue definitions by extension as 

follows (see [3]): 
 

Since  is the subclass of starlike functions with respect to conjugate points. More results can be found in [21, 22, 23] 

on starlike functions with respect to symmetric and conjugate points. In 1952, Kaplan [12] introduced the class of close-to- 

convex functions as follows 

 

Let be the class of close-to-convex functions with respect to symmetric point (see [11]) 
 

 
(1.8) 

where  (1.9) 

Let  be the class of close-to-convex functions with respect to conjugate point (see [27]) when  
 

(1.10) 

where (1.11) 
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Huo Tang and Guan-Tie Deng [27] introduced new subclasses of close-to-convex and quasiconvex functions with respect to 

symmetric and conjugate points. Such probability distributions as the Logarithmic, the Binomial, the Poisson, the Pascal, and 

other distributions have recently alleared in different context in the Geometric Function Theory of Complex Analysis mainly from 

a theoretical viewpoint (see [1, 5, 15, 17]). Recently, Wanas and Khuttar [28] have presented the Borel distribution (BD) whose 

probability mass function is given as follow 

Recall that if a discrete random variable  takes on the values  with the following probabilities, it is said to have a Borel 

distribution: 

 
(1.12) 

respectively, where  is the parameter involved. 

Wanas and Khuttar [28] also introduced the following series  whose coefficients are probabilities of the Borel 

distribution (BD): 

 
 

 

where, for convenience, 

 

We now recall the following linear operator  for functions  (see [6, 14, 25]):as follows: 
 

 

(1.13) 

We now recall several concepts and notations of the classical q-calculus, which is primarily inspired by the work of Srivastava 

[24], who employed a variety of operators of -calculus and fractional -calculus. First, the -Pochhammer symbol  is 

defined, for  and  by 

(1.14) 

and 

According to the -gamma function  defined by (see [7]) 
 

it is easily seen from (1.14) that 
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The gamma function  is known to satisfy the following recurrence relation: 
 

where  denotes the basic (or -) number defined as follows: 

 
 
 
 

 
(1.15)Using the definition (1.15), the -factorial  is given by 

 

For , we shall also make use of the following notation for the basic (or -) Pochhammer symbol defined above in (1.14): 
 

and, for convenience, we write 
 

(1.16) 

in terms of the -numbers  defined by (1.15). Clearly, from the definition (1.16), it is easy to see for the familiar 

Pocchammer symbol  that 

and, for the classical (Euler’s) gamma function  we have 

. 

For  and the function  given by (1.13), when we apply the -derivative operator  defined by (see 

[9] and [18]) 

we get 

 
 

where the function  is given by (1.1). 

Definition 2. [26] For  and , the linear operator  for functions  is defined as follows: 
 

where the function is given by 
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A simple computation shows that 

 

(1.17) 

where 
 

 
(1.18) 

We also note that 

and . (1.19) 

From the equation (1.17), we can easily verify that each of the following relations holds true for all  : 
 

and 

 
 

where 

. (1.20) 

Definition 3. A function  is said to be in the class  if and only if 
 
 
 

 
(1.21) 

 

Upon letting  in the class , we have 
 

where 
 

(1.22) 

for  

Definition 4. A function  is said to be in the class if and only if 
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where 

(1.23) 
 

If we let  in the class , we have 

 

 

(1.24) 

for  

 
2. SOME PRELIMINARY LEMMAS 

The following lemmas will be needed to prove our results. 
 

Lemma 1. (see [8], Lemma 2) If is given by  

hen 
 

(2.1) 

For the coefficient inequalities of the 

 

 
clasees 

 

 
and 

 

 
is given by (see [20]) 

Lemma 2. ([20], Theorem 3.1) Let   . Then for 
 

and 
 

Lemma 3. ([20], Theorem 3.2) Let . Then for  
 

and 
 

Note: Using the techniques used by A.T. Oladipo [16], we prove the next result below. 

 
3. MAIN RESULT 

In this section we give the coefficient inequalities for classes  and  

Theorem 1. Let Then, for all  
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(3.1) 

and 

 

Proof. Since , then we have from Lemma 2 when  

(3.2) 

Since , it follows from (1.21) by using Equation (1.6) 
 
 
 

 
(3.3) 

It follows that 
 

Equating the coefficients of like powers of , we have 
 
 
 

 
(3.4) 

By applying (3.2) and followed by Lemma 1, we get (3.1) from (3.4). This completes the proof. 

Letting in Theorem 1, we obtain the following corollary. 

Corollary 1. Let . Then, for all , 
 
 
 
 
 
 

 
(3.5) 

and 
 

where  are given by (1.20). 

Theorem 2. Let . Then, for all 

http://www.ij-rp.com/


Coefficient Estimate for a Subclass of Close-to-Convex Functions with Respect To Symmetric and Conjugate Points 
Connected With the Q−Borel Distribution 

IJRP, Volume 07 Issue 02 February 2024 
 
 
 

www.ij-rp.com 
 
 
 

Page 460 

 

 

 

 

 
, 

and (3.6) 
 

Proof. Since , then we have from Lemma 3 when  
 
 
 
 
 

 
(3.7) 

Since , it follows from (1.23) by using Equation (1.6) 
 

(3.8) 

It follows that 
 

Equating the coefficients of like powers of , we have 
 
 
 
 

 
(3.9) 

By applying (3.7) and followed by Lemma 1, we get (3.6) from (3.9). This completes the proof. 

 
Letting in Theorem 2, we obtain the following corollary. 

Corollary 2. Let . Then, for all , 
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(3.10) 

where  are given by (1.20). Our next result is to briefly look at the connection of our classes to the classical 

Fekete-Szegö Theorem. 

 
Theorem 3. Let . Then, 

 

 
(3.11) 

and 
 
 

 
Proof. Also, the proof could be obtained from Theorem 1. 

Letting in Theorem 3, we get the next corollary. 

Corollary 3. Let . Then, 
 

 

(3.13) 

and 
 

(3.14) 

(3.12) 

 
Theorem 4. Let . Then, for  

 

(3.15) 

and 
 

(3.16) 

Proof. Also, the proof could be obtained from Theorem 2. 

Letting  in Theorem 4, we get the next corollary. 

Corollary 4. Let . Then, 
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(3.17) 

and 
 

(3.18) 

In the finally result is on sufficient condition for a function  to be in  

Theorem 5. Let the function  defined by (1.1) and let 
 

(3.19) 

holds, then  belong to . 

 
Proof. Assume that the inequality (1.21) holds. Then we get for . 

 

 

Now, letting , therefore, we obtain 
 

Therefore, it follows that 
 

(3.20) 
 
 

 
Assuming 

(3.21) 

Then  is analytic in  and . Therefore, . 

Theorem 6. Let the function  defined by (1.1) and let 
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(3.22) 

holds, then  belong to . 

 
Proof. Assume that the inequality (1.23) holds. Then we get for . 

 

Now, letting , therefore, we obtain 
 

Therefore, it follows that 
 

(3.23) 

Assuming 

(3.24) 

Then  is analytic in  and . Therefore, . 
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